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1. Introduction

Let f be a real-valued function defined on the state space of a

regenerative process X - WO t: t > 0) with regeneration times

0 -T 0( T 1< seand suppose that

it

(.)rt t f~ f(X(s))ds *r a.s.
0

as t * . The problem of estimating r via a simulation of I is called

the steady state simulation problem.

Relation (1.1) implies that re is a strongly consistent point esti-

mator for r. To obtain confidence intervals for r, set (for k > 1)

Tk Ac ,,ssjon For
Yk f f f(X(s))ds 

-o

'k Tk k



The regenerative structure of I guarantees that r - E(YI(f))/E{v I} and

that M(k (f), vk: k > 1) is a sequence of i.I.d. random vectors.

Standard arguments (see CRANE and IGLEHART (1975)) show that if

E{Y2(f) + C 2 , then

(1.2) /t(rt - r) - a(O,1)

as t * e, where a2 (2{Zt)/E(-c). To use (1.2) for confidence inter-

vals, the regenerative cycle structure of I is exploited to obtain a

strongly consistent estimator v t for ( 2

These confidence intervals, while asymptotically correct, often have

poor small-sample behavior. For example, such confidence intervals often

tend to significantly undercover the parameter r. Several recent studies

have examined this problem. GLYNN (1982), in considering regenerative

confidence intervals on the time scale of regenerative cycles, obtained

asymptotic expansions for the coverage error which indicated that skewness/

kurtosis effects play a significant role in determining quality of the

confidence interval. To be more precise, the error, to a first approxima-

m~ njtion, is determined by the magnitude of quantities of the form E(z'~~

for m + n < 4. GLYNN and IGLEHART (1984) obtain expressions for the

asymptotic covariance between rt and vt, and the variance of vt; these

expressions also involve mixed moments of the form K-(Z; 1 T,. Conse-

quently, in studying small-sample behavior of regenerative confidence

intervals, It is of some interest to be able to calculate the exact values

of the mixed moments for some "test case" stochastic models. HORDIJK,

2.. ,
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IGLEHART, and SCHASSBERGER (1976) showed how to do this for a + n < 2,

when X is a discrete or continuous time Markov chain with countably many

states. In this note, we show how to calculate such quantities when I is

asesi-Harkov process with countably many states; discrete and continuous

time Narkov chain results follow as special cases.

2. Statement of the Reurgive Mosmat Formulas

Let X - WO(t : t > 0} be an Irreducible non-explosive regenerative

semi-Karkov process on countable state space E. Thus, X(t) may be

represented as

k-0

where:

(i) It ( R n > 0) is a discrete-time Narkov chain on E with

transition matrix VP = (p X, : X'y C K)

(ii) S { S n n > 0) is an increasing sequence of Jump times with

S 0 and differences a S S~ which are conditionally

independent r.v.'s given Rt.

The conditional distribution of a is given by F(R ,R idt)

P(a e dtlit}, where F(x,y,O) - 0 for all xy e E. Note thatSn Sn

*a.*., since I is non-explosive by assumption. Fix z e R as the

*.regenerative state; let T(z) -inf(t > 0 :X(t-) z' , X(t) z ) and set

3



T( z)
Y(u) f u(X(t))dt

0

where u E It1 is an arbitrary function. We wish to study mixed moments -

of the form

ajjx W %(Y(9)i Y(h))

for x eE, 0< i<m, and 0 < j a, when g and h are fixed func-

tions, and a and n are non-negative integers. Throughout the paper we

shall use P {) and E {-I to denote conditional probabilities andx x

expectations, given X(0) - ft0 - x. Note that by choosing g(-) -f(-) -r

and h(-) -1, a (z) yields E (Zi ri}ij z I 1

To state our result, let a v b denote max(a,b) and set b n(x)-

E x (vYIIl v 1) a (Y(IhI) v 1)nj . Let G nand 0. be the matrix and

function, respectively, defined by

G (x.y) -~x ~xy
,O y-Z

On - gnx'y) pX
YCE

where 4n(x,y) -i t~ F(x,y,dt). Also, we shall identify real-valued

functions u(s) on E with column vectors u. and shall use the notation

tha 0 v to denote the vector with x component (a 0 OW(x u(x)v(x).
0 mn+1 u0n)

set a(0) 1 and a (, . for n >0.

Let C denote the class of all m~ n matrix-valued functions, C,

on 9. Then set
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k-0 --0

1 G i k] XY)k(y)l <-
yeE

and (G; cij)(x) * 0 as k *.

for all x c E, 0 < I < m, and 0 < j < n .

(2.1) Theorem. If ban(z) <-, then A {a :0 < i < m, 0 < J(x n)

is the unique solution in Cmn to the system:

(2.2) c 1 1  z i 0 op0 P + (i)(i)(5i o Io
(klEij

where 0 < i < m, 0 < J n n, and Bij = {(k,l) 0 < k < i, 0 < I < J,

k+X > 0).

Set Tr inf(n >1 : Rn= z) and observe that

G(xy)- P. - y, c > k •

Hence, * 0 as k + . It follows that if E has a finite number of

elements, Cm- C, so that the a j's are unique in the class of all

possible solutions to (2.2). Also, in the presence of a finite state

space, it is well known that (I exists, so that (2.2) may be

re-written as

5d..
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(2.3) Cij - (I - )ll 0 j 0

+ i)()(s -k o -  (a _,

(k, 1) cAij

where 0 < i , 0 < J C n, i + j > 0, and A J ((kt) 0 < k < i,

0 < I < J, 0 < k+1 < i+jl. Also observe that e 1. Note that the

system of equations (2.3) is recursive in i+j, in the sense that the

Clj's may be solved in terms of the ckt's, where k+t < i+J. By

successively solving for the cki's with fixed k+X on each iteration, one

eventually obtains Can

Formula (2.3) can be further simplified when X has special struc-

ture. Note that if X is a continuous time Markov chain, then

F(x,ydt) A(x) exp(-,(x)t)dt

for t > 0, so that

n(X,y) =n1lX(x) n  I- (nx) • ,..'

We find that (2.3) can be re-written as

¢l X- 0  [ 0Ij  0 qi+J,"?.

k )(,)(gI o 04+J-k-A 0 0 kl.)),
(k,,t) Aij

where 0 < ( m, 0 < j< n, and i+J > 0.

For discrete time Harkov chains, s i and C - CO, 50 (2.3)n I andCn G

takes th form

6
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+ ~ I(i)(i k 0 bkt- 0 (Go %))I
(k, 1) Ai

iji

where 0<i <m, 0 j < m, and i+j > 0.

Relation (2.4) expresses cij in terms of G0 ckt, where (k, 1) e Aij

Equation (2.4) can be re-written, when X - h, so that the cjj' are

written directly in terms of the ckd's. If X - h, we write cij as

ci+j , and observe that (2.4) takes the form

(25I, 1 ri19 I (k(i-k 1 oc) I<1< n
k-1(2.5) cei  (I- G0)Ig k+ I X i. i-

Recall also that from (2.2), c0  1. We claim that the system (2.5) can

be re-written as

(2.6) C , C) {o-k+lI k 0 C < < n

kal

The proof is by induction. For n I, the result is obvious, so suppose

(2.5) and (2.6) are equivalent systems for n - a. To check the (m+I)'st

equation in the (m+l)'st system, observe that a solution of (2.5)

satisfies

(2.7) + - ( - 0 )-{ (6' + ( 9 )4*Gio C) .im41 i 0

By the inductive hypothesis, (2.6) shows that

7
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(2.8) C0 cg1 --

for i < a. Substituting (2.8) into (2.7), we get that (I-

equals

W+.1 + (23 1)I) ) i-k 24.1-k
i -I k-O i k0c

0+1 qli-k .4.2-k
k " )(g 0 k('k-O

-ti .4.1-1 (I)-

which is equivalent to the (w4.1)'st relation of (2.6) (the binomial

identity was used for the third equality). The steps being reversible,

this proves the claimed result. We remark that (2.6) yields the equations

of (41 for i - 1, 2.

3. Proof of the Tbeorem

We proceed via a series of lemmas.

(3. 1) !in. If b (z) <, then the r.v.'s Y(g)i Y(h)J are integrable

under the probability distribution P for 0 < i < m,0 < J.< n, x £E.x

8



Proof. Note that

(Y(jgj) v 1)' (Y(jhj v I)i < (Y(lgj v )m (Y(Ih V 1)n

so that bij(z) <- for 0 < i < a, 0 < J < n. Since X is irreducible,

it follows that P {T(y) < T(z)} > 0 for all y c E, for otherwise the

regenerative property guarantees that - P T(y) = - 1, which violates our
z

irreducibility assumption.

Then, by the strong Markov property applied at time T(y),

T(z) T(z)
-z {(f jg(X(s)Jds I) i (f Jh(X(s))Jds , ])J; T(y) < T(z)}

T(y) T(y)

- bij(y) P(T(y) < T(z)IX(O) z} < bij(z)

so that bij(y) < for all y c E, which proves the result. .

(3.2) Proposition. If ba(z) <-, then aij(x) exists and is finite for

0 < i < a, 0 < j < n, x e E. Furthermore, A solves (2.2).

Proof. The first part follows imediately from Lemma 3.1. For the second

i
part, the integrability of Y(g) Y(h)J  ensures that the following manipu-

lations of conditional expectations are valid:

9.
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ajj(x) E E(Y(g) £Y(h)}

-E1{Y(g)i Y(h)~ - 1) + Ex (Y(g) 1 Y(h)J; -~> 1I

-gi (x) hJ (x) ij . (XZ) Pxz

T(z)
+ E x (g(R0 ) ao + -f g(X(t))dt) (h(RD) ao

Si

T(z)

S I

+ (i)(j) E1f(R)-'k h(ZLO) 1  i+i-k-jt(fTz g(X(t))dt)k

TL

Si

+ (k)(j g-kx) ~~ p ijkt(x ,y)

k-O0 k O y"~-- Iy

-(gi 0 hi 0 )(x) +(i)(j)(i-k 0 b-

i~j (k,.I 1B k

0 (a~ . 1  ak)(x))

the strong Markov property at time S1  was used to obtain the second last

equality. 0

(3.3) Lie. If b m(z) <, then A~ C CM

10



Proof. For the absolute suumability observe that dij(x) -

Ex{Y(gj) i Y(Ihl)j)} satisfies

dij ft JIi 0 Jhij 0 pi+i

+ Bi )(J)(1glik o 0 (Gi+ -k- it d- k)
(k,1)eBi

But dii(x) < bij(x) <, so 1g]i-k o iaj -, o (.i+i~_ d.£)  is finite,

proving the first part, since jaiji dii. For the second,

T(z) T~z)
= a(x) E f Y(g))i (f Y(h) ; > k,0 Sk Sk k

which tends to zero by integrability of y(jgj)i Y(jhl)i.

(3.4) T a. If b (z) <, then A is the unique solution to (2.2) in
an

Ian

Proof. Suppose that {ars 0 < r < k, 0 < s( 1} is unique in Cki

for k+t < i+j, where 0 < i < m, 0 ( J < n. We shall prove uniqueness in

Cij; "bootstrapping" this result yields the lema. Since the ars's are

unique in Cki, any solution to the (ij) equation must satisfy

(3.5) C oxi + ( )( )(gi - k o h - 0 C i+j-k-) a)
j ++ k,I.)eAi ki1j-k-

"" ~+ '-0 "ii ,
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By the absolute summability, any tvo solutions cjj £I of (3.5) must

satisfy (ci - c'l) - G (c - a' ). Since Ge(c - c' ) > 0 as
i0i oj ij Oi ij

k . it follows that cj -c'j proving uniqueness in Cij. 0

These above results prove all the assertions of the theorem.

Both authors gratefully acknowledge support by U.S. Armsy Research

Office Contract DAAG29-84-K-0030. The second author was also partially

supported by National Science Foundation Grant MCS-8203483.
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